Entropy and Free Energy

I can...

The Driving Forces

State the two driving forces for reactions, Enthalpy (Δ H) and Entropy (Δ S).

State that Enthalpy (Δ H) tends toward a minimum and this means

- ΔH is negative
- $\Delta H \text{ is } < 0$
- heat is on the right (products)
- PE curve is downhill

State that Entropy (ΔS) tends toward a maximum and this means

- ΔS is positive
- $\Delta S \text{ is } > 0$
- the products are more disordered (spread out) than reactants
- the entropy curve is uphill

Calculate ΔH using Hess's Law or $q=mc\Delta T$ and moles of reactant.

Entropy

Define entropy (Δ S) as the randomness, disorder, or "spreadioutiness" of a system.

Calculate entropy (Δ S) using Hess's Law with these differences:

- elements have values for entropy
- units for entropy are J·mol⁻¹·K⁻¹ rather than kJ·mol⁻¹... (a conversion is usually needed).

Recognize changes in entropy.

Entropy increases, $\Delta S +$, $\Delta S > 0$:

- from solid \rightarrow liquid \rightarrow gas
- fewer moles (g) \rightarrow more moles (g)
- simpler \rightarrow more complex molecules
- smaller molecules \rightarrow longer molecules
- ionic solids with strong attractions → ionic solids with weaker attractions
- separate solute & solvent \rightarrow solutions
- gas dissolved in water \rightarrow escaped gas

STUDY LIST From Paul Groves

Spontaneity (Product-Favored)

Look at a reaction and state whether it is exothermic or endothermic.

State whether a reaction will be product-

favored depending on Δ H, Δ S, and absolute temperature.

ΔH	ΔS	Product-Favored
+	+	at higher temperatures
_	_	at lower temperatures
_	+	at all temperatures
+	_	never (reactant-favored at all temps)

Explain that many books use the term "spontaneous" for "product-favored."

A spontaneous reaction does not necessarily mean a fast reaction. The SPEED of a reaction is Kinetics (Ch 15)... we are discussing whether a reaction CAN OCCUR which is Thermodynamics (Ch 6 and Ch 20).

Combine the effects of Δ H, Δ S, and Temperature to form Δ G, the Gibbs Free Energy: Δ G = Δ H - T Δ S

Note watch your units for $\Delta H \& \Delta S$

 $\begin{array}{l} \Delta G{<}0,\,\Delta G-\text{, product-favored reaction}\\ \Delta G{>}0,\,\Delta G+\text{, reactant-favored reaction}\\ \Delta G{=}0,\,\text{reaction is at equilibrium} \end{array}$

Use the special case of **equilibrium** (e.g. boiling point or temperature when a reaction becomes spontaneous) to use the modified equation: $\Delta H = T\Delta S$

Link with Other Chapters

Convert between K, Δ G, and E° using equations given on the AP Exam.

